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For lattice gas systems obeying Fermi-Dirac statistics, an H-theorem can be 
proved with a more general condition that the semi-detailed balance condition. 
This new condition allows more flexible transition rates among states, so that 
it has broader applicability for various lattice gas models, including those which 
have multiple phase properties. 
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1. INTRODUCTION 

It has been shown that the lattice gas method ( L G M )  is an efficient tool 
for simulating fluid flows. ~-4) Besides some of  its obvious advantages, 
its convergence and stability properties can be linked to existence of  an 
H-theorem. An H-theorem has been proved by H6non for lattice gas 
systems satisfying the so-called semi-detailed balance condition, tz) Given an 
H-theorem, a lattice gas system is guaranteed to approach a unique equi- 
librium state from any arbitrary perturbations, and hence derivation of  
hydrodynamics  based on the equilibrium distribution is well defined. 

In the past few years, a number  of  lattice gas models have been 
developed for simulating various types of  fluid flows, t5-8'~~ However, 
particle dynamics in these lattice gas systems generally do not obey the 
semi-detailed balance condition, so that the previous proof  of  an 
H-theorem by H6non no longer applies. In order to provide a solid 
theoretical justification for these and perhaps various other lattice gas 
models, t~l) it is necessary for us to seek an H-theorem with more general 
conditions than the semi-detailed balance condition. 
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In this paper, we show that a local H-theorem exists if a generalized 
semi-detailed balance condition is satisfied. With the generalized condition, 
transitions among states via collisions can possess preferred directions, and 
a chemical potential concept can be included. With some straightforward 
additional constraints, a global H-theorem can also be proved. However, 
studies remain to be done in order to show the existence of a global 
H-theorem under more interesting conditions having transition 
probabilities dependent upon local dynamical properties. 

2. LATTICE GAS D Y N A M I C S  AND SEMI-DETAILED BALANCE 
CONDIT ION 

The evolution of a lattice gas system can be generally described by the 
equation 

ni(x + ~;, t +  1)=nAx,  t)+A~ (1) 

where n~(x, t) ( = 0  or 1) represents the particle occupation number for 
momentum state i on a lattice site x at time step t. The constant vector ~; 
(i = 0 ..... b) is one of b possible speeds of a particle for a given lattice. Inter- 
actions among particles are represented by the collision term A,. and its 
explicit form depends on detailed particle interactions. Averaging the above 
equation, we have a lattice Boltzmann equation: 

N~(x + E,., t + 1 ) = Ni(x, t) + ~Qi (2) 

where N~(x, t ) -  (n~(x, t ) )  is the single-particle distribution function for 
momentum state i at site x and time step t (0 ~<N~< 1). The averaged 
collision term t-2~ ( - ( A , . ) )  has the general form 

~,= Y" (s; -s , )  A(s--, s') P(s) (3) 
s.s" 

where s={si=O, 1; i = 0  ..... b} and s'={s~=O, 1; i = 0  ..... b} are two 
possible states at a lattice site. P(s) represents the probability of finding 
state s at a lattice site. A(s~s ' )  (>10) is the transition probability from 
state s to state s'. Once a set of detailed dynamical rules at each lattice site 
is designed, the explicit form of the transition probability A(s ~ s') (Vs, s') 
can be specified. In general, P(s) and A(s~  s') can depend on dynamical 
properties of the site of interest itself as well as those of its neighboring 
sites. By definition, the normalization conditions must be satisfied: 

P(s) = 1 (4) 
s 
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and 

~" A(s ~ s') = 1, Vs (5) 
s' 

According to these definitions, we also have 

Ni = ~', siP(s) 
s 

before a collision. But after a collision, the single-particle distribution 
changes to 

NI = ~ siP'(s) 
$ 

where P'(s) is the probability of finding the state s after a collision: 

P'(s') - ~ A(s --* s') P(s) (6) 
$ 

Except for advection, N i ( x ) ~  Ni(x + dr), it can be realized that all of 
the dynamics is contained in Eq. (6). Hence, local properties can be under- 
stood from this equation alone. Although detailed dynamics depends on 
specific collisions, it is interesting that fundamental statistical properties 
can be derived under some general symmetry conditions. H6non was able 
to show that an H-theorem can be proved for a lattice gas system as long 
as the following semi-detailed balance condition (SDBC) is satisfied by the 
transition probabilities (z) 

~ a ( s  ~ s') = 1, Ys' (7) 
s 

That is, for any given destination state s', the total transition probability 
from all its source states is the same ( = 1 ) as that for any other destination 
state. With SDBC, the H-theorem indicates that the following function is 
a nonincreasing function: 

at any lattice 
approached, 

H = ~ [ Ni ln(Ni) + ( 1 - -  Ni) ln( 1 - -  N , )  ] ( 8 )  
i 

site. Consequently, a unique equilibrium state is always 

P e q ( s )  = I - I  N~'~( 1 - N i )  1 - s i  

i 
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and the single-particle equilibrium distribution has a general ideal Fermi- 
gas form, 

1 
/Vi-  (9) 

1 + exp[~2~, fl~,I~.] 

where 17 is one of the local invariants under collision, 

I7(s~ -- s~) A(s ~ s') = 0 (10) 
i 

For example, 17 = I or 0; corresponds to mass or momentum conservation, 
respectively. The Lagrange multipliers fl~ are determined by the local 
conserved quantities, such as mass and momentum. 

Furthermore, a global H-theorem for the system can also be proved, 
because the global H-function, 

~ f  - ~ H ( x )  
x 

is invariant under advection. 

3. LOCAL H-THEOREM WITH A GENERALIZED CONDIT ION 

Now we show step by step that a local H-theorem can still be proved 
when SDBC [Eq. (7)] is replaced by a more general condition. These steps 
are very similar to those of H~non's. (2) 

L e m m a  1. For a transition matrix A ( s ~ s ' )  if there exists a 
positive-definite function r(s) (>0) such that 

~ r(s) 
r - ~  A(s ~ s') = 1, Vs' (11) 

s r s )  

then, according to (6), the following inequality holds: 

/ 1"(3) / P( s) "~ 
., r(s') \ r(s) / \ r t s ) /  

(12) 

where f (x )  is any convex function (d2f/dx'-> 0). 
We refer to Eq. (11 ) as the generalized semi-detailed balance condition 

(GSDBC), since SDBC is a special case of it when r(s) = 1 (Vs). Moreover, 
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a condition with unequal transition probabilities between each pair of 
forward and inverse processes 

r(s) A(s--*s')=r(s')A(s'  ~ s ) ,  Vs, s' 

is also a special case of GSDBC but not SDBC. 

Proof. For a convex function f (x) ,  there is a general inequality 

f ( . ~  q(s) P(s)/r(s)'~ 7~sq(s)f(P(s)/r(s)) (13) 
\ Y'.~ q(s) J <<" 2~ q(s) 

where q(s) (>0)  is any positive-definite function ofs. Let 

r(s) 
q(s) = r ~  A(s -+ s') 

we have, together with (6) and (l 1), 

q(s) P(s)/r(s) ~.~ = f f  j 
Y~, [r(s)/r(s')] A(s ~ s') J 

and 

~,.,.q(s)f(P(s)/r(s)) 2~ [r(s)/r(s')] A(s ~ s')f(P(s)/r(s)) 
Zs q(s) E,  [ r(s)/,'(s') ] A(s--, s') 

= V r(s)  (14) 

Hence Lemma 1 is proved. 

Lemma 2. The following inequality holds: 

s, P'(s') In \ r(s') J "~ ~ P(s) In \ r(s) ] (15) 

Furthermore, the equality holds when 

P" , r(s) 

where the local invariant I~ is described in the previous section. Z is a 
normalization constant: 
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Proof. 
we have 

Using the inequality in Lemma 1, and choosing f ( x )= x In x, 

P'(s')ln(P'(s')~<~ s' ,.. (17) 
\()1 ~. 

Summing over s' on both sides of the above and using the normalization 
condition (5), we prove 15). Furthermore, using the form given in (16) and 
Eq. (6), then ( 15 ) becomes 

{ tl ~. P'(s') In , . , r ~  A(s---, s') exp -- 

- -~P( s )~ f l~I ~s ~  (18) 

But according to (10), we have 

e x p { - ~ f l ~ I ~ . s i } = e x p { - ~ f l ~ I ~ s ' }  

Hence the left-hand side of (18) can be shown to be 

y ' P ' ( s ' ) l n  ._.r--~s,) A(s--* s')exp - f l ~  ITs ~ 
s '  s . . i ~ a 

= ~ P ' ( s ' ) l n ( e x p { - ~ f l ~ I ~ . s , } )  

= --E P'(s') E fl~ 2 I~.s; 

= - -2  2 A(s -* s') P(s) Efl~ 2 I~s; 
s"  s o~ i 

= --2  2 A ( s ~ s ' )  P(s)Zfl=2I~ 
s" s ~ i 

= - 2  P(s) ~" fl~ ~ ITs , (19) 
s ~ i 

where the first equal sign requires the use of GSDBC. Therefore, the 
equality is proved. 
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In fact, it can also be shown that the probability distribution given in 
(16) is also a steady-state solution of Eq. (6): 

P(s') -- ~" A(s --* s') P(s) 
s 

as well as a solution of 12~ = O. 

L e m m a  3. 

b 

r(s) = I-I F 7  ~', 
i 

In particular, if r(s) takes a factorized form 

Vs 

then the following inequality is satisfied: 

(P(s)'~ >1 L { N, ln(FiN,) + ( 1 - -  N,) ln(1 - -  N,.)} Z P(s) In \ r(s) J 
s i 

The equality holds if and only if 

20) 

(21) 

b 

P(s) = 1-I N~'( 1 - N,)' - "~' (22) 
i 

It is realized below that Fi ( i=  1 ..... b) can be any positive-definite 
functions of quantities that are unchanged under collisions at a lattice site. 
For example, F~ could be a function of locally conserved quantities such as 
local density and momentum, (~~ or it could be a function of properties at 
neighboring sites, such as some functions of scalar product of ~; and vector 
fields which are defined by neighboring distributions. (6'5"v~ 

Proof. Since N i = Z ,  sjP(s), the right-hand side of (21) can be 
written as 

b 

{N, ln(F,N,) + (1 --N,) ln(1 -- N,.)} 
i 

E ] =y '  P(s)In I-I (FiN~)S'( 1 --N~) ~-s' 
s i 

Therefore, we only need to show that 

~ P( s) ln ( r( s) I-I~ ( FiN y i  ( 1 -  Ni) ' -~i P(s) <~ 0 

( 2 3 )  

( 2 4 )  
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Local 
holds: 

Use the property In x ~< x -  1, we have 

in (r(s)1--[i b (FiNy'(1-N~) '-si) r(s)1-I b (FiN,)Si(1-Ni) 1-~'I 
P(s) <<" P(s) 1 

Hence (24) becomes 

~ p(s) ln (r(s) I-Ibi (F~N~)S' (1 -  N~) l-s') 
s e(s) 

b 

<~ ~. r(s) YI (F,N,) ~' (1 - N,) ' -s ,-  1 (25) 
s i 

But with the factorized form for r(s) given above, the right-hand side of 
(25) is equal to zero. Thus, Lemma 3 is proved. 

H-Theo rem.  If r(s)=yl~F7 ~, the following inequality 

That is, 

b 

Y' { N~ ln(F,N~) + ( 1 - N~) ln( 1 - N~)} 
i 

b 

~< ~ { g~ ln(FiN~) + (1 - N~) In(l -- N;)} 
i 

(26) 

b 

H =  ~, { N, ln(FiNi) + (l -- N;) ln(1 - N;)} (27) 
i 

is a nonincreasing function of { N~, i = 1 ..... b} under local collisions at each 
lattice site. The single-particle distribution function N~ corresponding to the 
minimum H has the following Fermi-Dirac form: 

1 
NT" = (28) 

1 + F; exp[Z= fl=I~.] 

where 17 is one of the local invariants under collision (such as 1, ~), 
and the Lagrange multipliers fl= are determined by the local conserved 
quantities, such as mass and momentum. 

Proof. Using results in Lemma 2 and 3, we can easily proved (27). (2) 
Moreover, let us write 

z J N i  ~ Ni -  N ~  q 
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Then it can be shown that 

b 

A H -  ~ { Ni In(FiN,) + ( 1 -- Ni) ln( 1 -- Ni)} 
i 

b 
- 2 {u~.q ln(F, UT") + (1 - UT") ln(1 - U~q)} 

i 

=~ u:. l+-y~.)ln(l+u:q/+(1-U:") 
i 

ANi \ (1- AN, ~ (FIN:" ~ 
x ( 1  1 _---~- q.) In 1 - S ~ i q j + A N i l n \ l _ N ~ . q j j  

But the last term vanishes because of conservation properties, 

b 

E I; ANi=O 
i 

and 

(29) 

( F, NT" o 
In ' , l - -N~q /  -~,fl~,I, 

ct 

Furthermore, using an inequality like (13), we have 

b ( ANi~ (~-,aN~.q(l+(ANilN~q)),~b 
AH>~'~N~ q l + N ~ q / l n  ' ' -7~-T~ + ~ ( 1 - - N ~  q) 

i Xi N, J , 

AN, ~ in (Y"~ (1 -m~q)(1 --(AN;)/(I -- 
x ( 1 -  l _ N : q /  ~---g/b i i -  ~ N:q)))  : 0 (30) 

Therefore, the local H-theorem is proved. 
From the above analysis, we see that a local H-theorem can still be 

proved with a more general semi-detailed balance condition. The probability 
function P(s) approaches a factorized equilibrium form in terms of the 
single-particle distribution N,. if the rate r(s) is factorized. But more 
generally, the equilibrium has the form given in Lemma 2. Indeed, it can be 
easily shown that the single-particle equilibrium distribution function (28) 
is a direct result of 

Neq "= Z sipeq(s) 
$ 

where Peq(s) has the form given by (16) with a factorized r(s) defined 
by (20). 
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4. GLOBAL H-THEOREM 

Unlike SDBC, a global H-theorem is not always implied by the local 
H-theorem above. The reason is that for a general collision invariant F;(x), 
its value changes under advection. We write the global H-function as 

b 

Jr=_ ~ ~ {N,(x)ln(F,N,(x))+(1-Ni(x))ln(1--Ni(x))  } (31) 
x ~ .~'  i 

This, in general, is not invariant under particle advections, 

Ni(x)oNi(x)~N~(x--~i)  

unless {Fi} satisfies 

F,-(x) = Fi(x - OiL 

where Fi(x) has the same functional 

(32) 

i=l,...,b (33) 

form as Fi(x) but uses {~j(y); 
j=l,...,b; yEZ~'} as possible variables in place of {Nj(y); j= l , . . . ,b ;  
y~ ~} .  Obviously, (33) is trivially satisfied in SDBC because it has Fi---1. 
Consequently, if a lattice gas system satisfies GSDBC and (33), a global 
H-theorem exists. However, although condition (33) is more general than 
the SDBC, even more interesting cases are for {F;} to be dependent on 
more complex dynamical properties. 

The change of the global H-function due to advection is 

b 

A ~  ~ E E {/~i(x) ln(P~N,(x)) + (1 - N;(x)) ln(l - Ar;(x))} 
x ~ .5f' i 

b 

- ~ ~{Ni (x )  ln(F~Ni(x))+(1--N~(x))ln(1-N~(x))} (34) 
xEf.~ a i 

Using (32), and renaming the dummy index x, we can immediately see that 

b 

Z~r = E E { N i ( x - - c i )  ln(zV,(x))- {N,(x)ln(F,(x))} 
x ~ "  i 

P,(x + e,) 1 --In ( ~ [ I  ~Ifi ~- i (x-)J  N,,x,) (35, 

Thus, A ~  ~< 0 requires 

b b 

1-I I~ F;(x) N''x-e''~< I~ I~ F,(x) N''x' (36) 
x ~ . ~  i x~5~ a i 
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O r ,  

b b 

~' ~ ; ( x ) N ; ( x - O , ) ~ <  ~" ~.~0,(x)N,(x) (37) 
XE-~' i x ~ l "  i 

where ~O i is defined as 

F,(x) - exp[~bi(x)] (38) 

Equation (37) indicates that ~Ol plays the role of some kind of chemical 
potential. Therefore, a global H-theorem exists if advections always 
decrease the overall chemical potential energy, U=Zx~_~ Y'.~ ~i(x)N~(x), 
of the system. In other words, if the choice of F~ is made such that (37) is 
satisfied, then an equilibrium should correspond to a minimum value of U, 
and a global H-theorem exists. Unlike the cases obeying SDBC, the above 
equilibrium state is more interesting since it may not necessarily have a 
spatially homogeneous distribution, which is more applicable to modeling 
flows with multiple phases. Nevertheless, it seems obvious that condition 
(37) cannot be satisfied with arbitrarily given N;. Hence, nontrivial 
couplings of local equilibrium distributions and advection combined with 
proper choice of F~ is needed in order to guarantee a global H-theorem. 
This is subject to further study. 

To conclude this section, it is perhaps illuminating to give a simple but 
specific example of a lattice gas model with seven momentum states on a 
hexagonal lattice/].3) We define momentum states i = 1-6 to be the moving 
particle states of equal speed along the six possible directions, while 
momentum state 0 is a rest particle state of zero velocity. If we let F; = e . . . .  
for i =  1 ..... 6 and F 0 = e  -a~ then, according to Eq.(20), we have the 
transition probability A ( s  ~ s ')  and its inverse related by 

A(  s ~ s' ) /A(  s' ~ s) = ea"';,, + ~~ ~''~'' + ~~176 (39) 

where So and s~ are, respectively, the rest particle occupation numbers in 
local lattice states s and s'. Similarly, Sm and s',,, are, respectively, the total 
moving particle numbers in local lattice states s and s', namely 

6 

Sm ~ E Si 
i = 1  

6 

E 
i = l  

If collisions are particle conserving, then 

S . , + S o = S ' m + S ' o  
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and Eq. (39) becomes 

--4" t 
A ( s  s ) eCa,,_~0)~,.0_s6 ) (40) 

Hence, suppose ao > a,,; we see that A(s  --* s')  > A(s '  ~ s) whenever s; > So. 
That is, the higher rest particle occupying state is preferred. Obviously, 
Eq.(39) is a special case of GSDBC [as defined in (11)]. However, 
because of the unequal forward and inverse transition probabilities, the 
original semi-detailed-balance condition is violated. According to the 
proofs given in the previous section, a local H-theorem exists for this 
system, and, using Eq. (28), the corresponding equilibrium distributions 
can be easily written down, with explicit dependence on a,,  and a0. From 
these forms, we can immediately interpret a,, and a0 as effective chemical 
potentials of moving and rest particles, respectively. Furthermore, based on 
the analysis provided in this section, we see that a global H-theorem exists 
for this system if a,, and a o are not functions of space. 

5. D I S C U S S I O N  

We have shown an H-theorem with a generalized condition (GSDBC). 
This condition has a wider applicability to lattice gas systems which do not 
simply have ideal Fermi-gas equations of state. 

Further studies involve generalizing the above analysis to cases in 
which (a) the transition ratio r(s) is nonfactorizable and (b) a global 
H-theorem can be proved with r(s) depending on local dynamics. Also, it 
should be interesting to examine whether the existing lattice gas models 
obey the generalized condition given in this paperJ 5-s'~~ 

The generalized semi-detailed balance condition has a wider 
applicability to lattice gas modeling of various fluid flows. In fact, as we 
know, many existing lattice gas models do not obey the original semi- 
detailed balance condition and yet give good macroscopic results/5"9"w~ 
even though some of their model constructions as well as theoretical 
derivations of hydrodynamics use mean-field approximations. In fact, the 
generalized condition (GSDBC) does not violate the semi-detailed balance 
condition in a strict physical sense, if we imagine each lattice state s to be 
a representation of some kind of intermediate macrostate containing a 
number of "true" microstates. In this representation, the quanty r(s) can 
then be related to the degeneracy of the macrostate s. Therefore, the semi- 
detailed balance condition at the "true" microlevel is not violated. 
However, it is important to emphasize that, though the semi-detailed 
balance is still satisfied in a strict physical sense, the "true" microstates are 
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never explicitly followed in any lattice gas models. They are merely used as 
a tool for theoretically understanding various lattice gas models. In this 
sense, the generalized condition is different from the more restricted 
original condition, since in lattice gas models we always deal with lattice 
states. Furthermore, with the generalized condition, additional physics is 
introduced into lattice gas formulations when r(s) is dynamical. 
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